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I. INTRODUCTION

In some previous papers [I, 4, II] it was shown that certain fundamental
problems concerning the approximation by linear opcrators may be treated
from a unified point of view in arbitrary Banach spaces. The operators in
question were assumed to be generated via summation processes of abstract
Fourier expansions. The principal tool was a multiplier criterion based upon
Cesaro (or Riesz) summability.

In this note we would like to make some initial remarks concerning
extension to locally convex spaces. To this end, we fi.rst describe, in Section 2,
the general procedure. For the most familiar orthogonal expansions and
spaces the partial sums are already equicontinuous so that further summa
bility conditions and multiplier criteria may be dispensed with. The situation
changes immediately, however, if one restricts the discussion to order
preserving operators (cf. (2.7») in which one may be interested in connection
with certain problems in approximation theory (cf. (6.2)). Therdore we
proceed with these operators in countably normed spaces, the corresponding
criterion being given by Theorem 1. To study some specific examples of
expansions and spaces, Section 3 treats Hermite series in certain weighted
function spaces, Section 4 deals with some spaces of (smooth) tcst functions,
and Scction 5 is conccrned with their duals, thus with countable union spaces.
As an example of the approximation-theoretic problems which may be
considered, Section 6 compares two different processes with respect to their
rate of convergence.
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1. GENERAL THEORY

Let Z, P, N denote. respectively. the set or all integers, all nonnegative
integers. and all positive ones. Let X be a eNS, i.e., a complete countably
normed linear space. the topology being generated by a monotone increasing
sequence or norms {ak}kEP which arc assumed to be in concordance
(cf. [2, p. 5 IT.; 3. p. 10 ff.]). Thus, if XI. denotes the completion of X by a ..
then XII -=-1 Xl :) ... :) X and.r n: II XI.' Let [X] be the class or ,ill
continuous linear operators of X into itself and {P/.JkEI' C [X] bc a total
sequence of mutually orthogonal projections. Then with each (e: X one may
associate its unique Fourier series expansion

f--..o I Pl./'
1;--0

(fY). (2.1 )

With s the set or all sequences T [T/"}kCI' of scalars, T E S is called (cf. [5])
a multiplier for X (with respect to {p/;:) if for eachfc X there exists an element
fT ,c X such that

(k E Pl. (2.1)

Since {PI,: is total. f' is uniquely determined by f The corresponding
multiplier operator T, given via Tf: -- fT, is a closed linear operator from X
into itself which is continuous by the closed graph theorem (cf. [9, p. 126]).
The set of all multipliers T for X is denoted by M, the corresponding set of
multiplier operators T by [XlII'

To derive a multiplier criterion one may proceed as in [1.4, II]. Thus. let
the (C, (x)-means of (2.1) be defined by

(C,x),,I : (An") I I A;, /.1\ t:
1:0

A,,': C!I 1), (2.3)

and assume that. for some ,1 0, the operators (C,x)" are equicontinuous.
i.e .. for each k E P there exists some IE P and a constant CJk, I) such that

Co(k, I) alfJ, (fEX). (2.4)

C,(k, 1) being independent of f and n. Let len C s be the set of bounded
sequences and

T E lYe; T' bV'+l:= I A k '! LI" ITk

k~()

-I- lim: TI,
k-->:£

XJ ,(2.5)
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the (fractional) dilTerence operator being defined via (for the existence of
TJ.: Iim/;~.x Tic and further details cf. [II] and the literature cited there)

I A",
III (I 111-=-0

(
,\

1),,, .) TI. '" .
\ lJi,

(2.6)

Then one has bl\cl C M provided (2.4) holds (cL proof of Theorem I).
However, for the classical orthogonal expansions and spaces to be

considered in the following, one usually has that the partial sums are already
equicontinuous, i.e., (2.4) holds for \ O. This implies that each element
T E bv] , the set of sequences of bounded variation, is a multiplier for X,
and there is no need for a distinguished theory. This will become quite
different if one restricts oneself to a suitable subclass of operators arising
in connection with certain problems in approximation theory (cL (6.2)).

To this end, FE [X] will be called order-preserving (for the motivation
see Section 5) if for each k E P there exists a constant 8 1, such that

a,>,·(Ff) (fEX). (2.7)

Thus F has a (unique) bounded linear extension to the whole Banach space
XI. . In particular, a multiplier T E M is called order-preserving if the corre
sponding multiplier operator T satisfies (2.7). In this case we set

I'J (2.8)

Correspondingly, we suppose that the (C, ex)-means are uniformly order
preserving for some ex 0, i.e., for each k E P there exists a constant C,(k)
such that

(fEX), (2.9)

C,(k) being independent off and n. Then

THEOREM 1. Let {PIJ C [X] be a total sequence oj'mutually orthogonal
projections satisfying (2.9) for some ex 0. Then every T (~ hVQj 1 is an order-
preserving multiplier and

T liM:/; elk) II T
1:1

(2.10)

Prool Analogously to [I] we set up for eachfE X

iT := L A/L!Qj]TJ • (C, ex)J+ TxI
),0

(2.11)
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Then /T E XI. for each k c P since by (2.9)

CUd (1/,(/) I A,' .d' IT

i--(I

T, adf)

Hence, /T EX
Moreover, P,..!T
cited there)

n;~o X,. is well-defined for each/E X, and (2.10) follows.
T,P,ffor each k E P since (cf. [II, p. 20] and the literature

Tn I A1."Ll' IT"" (, .

I. ,0

(2.12)

For an application of Theorem I to an approximation-theoretical question
we refer to Section 6.

3. WEIGHTED FUNCTION SPACES

Let L". I p C£, denote usual Lebesgue spaces (with respect to
ordinary Lebesgue measure), thus, with R the set of real numbers. L"(R)

is the set of functions for which the norms

\ 1 'JI

f(x)I.' dx) p II, : ess sup ((x)
xER .

are finite. respectively. L1tc(R) denotes the set of functions which belong
locally to L", i.e., on every compact subset of R.

Let us now consider some results of Muckenhoupt [6] from the point of
view of Section 2. For the weights

Ur(x): (I I x )r exp{-x2!2}, (x, r E R) (3.1 )

let us introduce the Banach spaces

co}. (3.2)

If the indices r vary over some open interval E C R, then XI"': nrEL' Xl'·r is
a eNS. We would like to treat Hermite expansions on Xl"" Thus, if H,lx)
is the nth Hermite polynomial given via (cl'. [10, p. IOlf])

I (Hn(x)jn!) sn = exp{2xs - S2}.
11",-,0
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to eachfE XEJI one may associate its (well-defined, cf. [61, p. 423], [8, p. 17])
Hermite series expansion

where

f"-' I P,,/;
1.>=11

(3.3)

For this expansion together with norms ar given via (3.2) it follows that
condition (2.9) is satisfied for a = 0 provided (cf. [611])

P E Ct, 4),

and for a = I provided (cf. [8])

-lip < r < I - (lIp), (3.5)

I ~p < 00, r "'< -(lip) + 3, if p 4.

r < (l/3p) + m, if 4 p OC',

r > (1/3p) - 3, if p 4
3'

r :::> -(lip) - 2, if 4 P 00.:l

(3.6)

Thus for each fixed p, one obtains an open interval £(a, p) of indices r such
that the (C, a)-means of (3.3) are uniformly order-preserving on X~(a.p) for
cX= 0 and a = I according to (3.5) and (3.6), respectively. For example,
one has (precisely) £(0, 2) = (-~,D, but E = (l, 2) = (-~, J).

Correspondingly one may treat Laguerre expansions in suitable weighted
function spaces using results of [6], [8] (see also [7] for Jacobi series in
case ex = 0).

4. SPACES OF TEST FUNCTIONS

Let us now fit results developed by Zemanian [12, Chapter IX] into our
setting. Consider V' = LP(I) for some open interval I : c.~ (c, d), - OJ C <
d 00. ForfE U, g E U', (lIp) + (lip') == I, set

(f, g) := f feu) g(u) du,
J

(4.1)

the bar denoting complex conjugates. For certain positive integers nj let .ft
be a linear differential operator of the form

[% := 8o(x)(djdxfl 81(x)(djdxf' ... (djdxf" 8vCx), (4.2)
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with infinitely differentiable functions 0i(X) =/= 0 on I satisfying

Let {/\J/,'cP with i 1\0 : '\1 i "I. .,. CfJ, be a sequence or real
eigenvalues of //1 corresponding to an orthonormal sequence {t/;;,(x)} C
nl<;lJ';';oO U(l) of infinitely differentiable eigenfunctions, thus

(4.4)

Then the testing function space sl" is defined to be the set of all complex
valued, infinitely differentiable functions (/ on 1 such that

alp(q): sup aol'(:J£i q),
O<j<k

is finite for each k E P and

q: )1' (4.5)

( m :';12/',&)
. T'· IFn, (4.6)

for each k, 11 E P (so that :';12 turns out to be self-adjoint on .0/ 1').

It follows that ccc2 Ji is a eNS. For example, one may choose 1 R,
:J£ ~= (dldx? - x2 -+ I, '\ -2k, and (cl'. (3.4»

(k EP). (4.7)

Here "Pi == 6, the Schwartz space of testing functions of rapid descent.
Let again rp E i:;!P. Since ifJk EO VI', the Fourier coefficients (rp, ifik) are well

defined so that with each rp one may associate the expansion

'f r-v L Pk(f',
l,~--O

In order to examine (2.4) for l), ~=. 0, let there existjo E P such that

(4.8)

(i) (k ~+ ec),
(4.9)

(ii) If wp(k) (.up.(k) I Ale ] i o

/,~o

the dash indicating that those (finitely many) indices for which 1..1, == 0 be
omitted. In view of (4.4) one has

11

:li'i(C, 0)." rp ~ •. I (rp, ifJ1) :J£jifi/,
1>0
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and hence by Holder's inequality

jJ((C 0)) !' 'J~j(C 0) 'Iam 'n r:p = ~_up II ;;'"', n r:p I,)
O",::,)"",m

sup I'; AI:
O<j<m 11:=0

173

n

B I' (wik) wJJ,(k) 1 AI: l- iO
). sup e!Jt+jur:p !IJJ

7,=() O<'-i'<m

so that the (C, a)-means of (4.8) are equicontinuous (in the sense of (2.4))
for a = O. On the other hand, the corresponding condition (2.9) is generally
only satisfied for certain larger values of <x, depending upon p and {Pd.

Let us consider the trigonometric system in some detail. Thus choose
I = ( -n. n), ,'3i = -i(djdx) and, with a different numbering system,

(k E Z).

Then /;$JJ may be identified with '!l2Ti' the set of infinitely differentiable,
2n-periodic functions. On (:i!2Ti one may define a total sequence of orthogonal
projections {P,J"EP by

(Por:p )(x) := r:pA(O), (P"r:p )(x) : = r:p~(k) eil:x + r:pA( -k) e-iI.J; (k EN),
(4.10)

r:pAU) being the jth complex Fourier coefficient

r:pA(j) := (27T)-li 2 r" r:p(u) e-1ju du
"-iT

(j E Z).

Then the corresponding partial sum operators (C, 0)", are equicontinuous
since (4.9) is satisfied for io= 2 (note that :lvJ" !IJJ ~~ 1 for all k E P,
1 ,;; p :S; 00). On the other hand, whereas they are not uniformly order
preserving for p c_~ 1, p = 00, the (C, 1)-means do possess this property
for all 1 'S; p .:S; 00 since by Fejer's theorem

Analogously one may deal with all the other classical orthogonal
expansions such as those into Jacobi polynomials or Laguerre functions.
Concerning the validity of a condition of type (2.9) one may as above
consult the results in the corresponding Banach space-setting (cf. [1, 4, 11]
and the literature cited there).
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5. COUNTABLE U'JON SPACES

Let {YJI/).,,,CP be a monotonely increasing sequence of Banach spaces
equipped with the monotonely decreasing sequence {""': of norms, i.e ..

"",( 1) for all I r,,,. (5.1 )

Let Y: - U,;,~O YJI/ be the corresponding countable union space, i.e., the
inductive limit of the Y'II'S. Then a linear operator L from Y into itself is
continuous if and only if the restriction to each Y'N is continuous, i.e ... to
each m E P there exists some j j(lIl) E P such that ITj( Lf) C" '" IT.", ( f)
for all fEY", (cf. [2, p. 20]). In case one may take.i 171, I.e.,

7T.",(Lf) (Icc Y,/!), (5.2)

L is called order-preserving, thus being a bounded linear operator from Y",
into itself for each lIZ E P. Of course, the constant ell, depends on the choice
Of[E Yas far asfdetermines III E P viafc YiI ,. Obviously, one may proceed
as in Section 2 to study order-preserving multipliers on Y.

A significant example of a countable union space is given by the dual
x* U~=o XI. of a CNS X n~~o XI, XII' being the dual of the Banach
space Xk • Since the smallest k such that X" belongs to X I* is called the
order of the functionalf(cf. [2, p. 10; 3, p. 28]), this motivates the terminology
for operators satisfying (5.2) (or (2.7)). Of course, if condition (2.9) is valid
on X for some it 0, then one may derive the corresponding one on X* by
duality. Particularly, if X is one of the testing function spaces of Section 4,
this yields applications to multiplier operators as defined on the corre
sponding spaces of distributions. Ilowever, in this note we will not be
concerned with these details.

6. A COMPARISON THEOREM

In this section we would like to give an example of the approximation
theoretic problems which may be considered in the setti ng of Section 2.
Thus let X be a CNS. A family {T(p)),,:o C [X] is called an approximation
process if for each k E P

lim (lliT(p)f· . .fJ C~. 0
P

(jEX). (6.1 )

Let {SIp)} C [X] be a further approximation process. Then (cf. [I I] and the
literature cited there) one is interested in direct estimates between the
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quantities T(p)f -f and S(p)f --f, thus to establish, for instance, the
existence of constants Ale 0 such that for each k E P

(fEX,p>O). (6.2)

In this event, the process {T(p)} is said to be better than {S(p)} (in the order
preserving sense).

THEOREM 2. Let {S(p)}, {T(p)} C [Xhf with associated multipliers {Uk(P)},
hlp)} be such that {OI.(P»). gil'en ria

(k E P, pO),

defines a family oj' uniformly order-preserving multipliers. Then the process
{T(p)} is better thall {S(p)}.

Prool If U(p) E [Xl\! corresponds to o(p) E M, then

Since {PI,} is total, this implies

T(p)f -- / U(p)(S(p)/ - f)

and therefore (cf. (2.8) for each k E P

(fE X, P -:> 0),

adT(p)f - f) O(P}:M;1c al.(S(p)f - f) (fE X, P > 0)"

which gives the assertion since {o(p)} is uniformly order-preserving.
Let X, {PI,} be as in Section 2 such that condition (2.9) is satisfied for some

ex O. Then one may consider the Abel~Cartwrightand the Riesz means of
(2.1), thus for K 0, P 0

where for ,\ > 0 (for the convergence of the first senes cf. [I, Part II;
II, p. 23])

r\(t)
\(1 - t/,
10,

o I,
I t,

respectively. For each K 0, A > ex one has (cf. [I, Part n, lID that

{r,J(k/p)K)} C bV'\+1

uniformly for p 0. Moreover. if one sets

d(t) c_c [wet) -- 1]/[1',\(1) - I],
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then it follows for each K 0, A :, that (cf. [II, p. 58])

{d((k! p)")}, {l/d((k;p)")} C bC,l .

uniformly for p O. Therefore by Theorems 1,2 the Abel-Cartwright means
are better than the Riesl means, and vice versa, i.e., the processes (6.3) are
equivalent for A (x. For integral eX this holds true for A (X as well.

Now one may specify the spaces X and projections {Pr}. For example,
if one considers Hermite expansions on weight spaces according to Section 3,
then for A I

AT ii[R".,\(p)f(x) - f(x)] U,(x)!JJ

B,I![rY,(p)f(x)~f(x)] U,(x)j'p,

for each r E E(l, p), the constants AT, H, being independent oyrE X{o,p) and
p > O. Correspondingly, in the setting of Section 4 one has for (Ax) 1\ --> (X

sup W,,(p) 8f!i 'P -:Iliep I!p :e;; AI; sup R".,\(p) 8f!i(p
O«iO, O:V./;

:e;; Hf; sup rY,cCp)PJli ep
OJ I;

for each k E P and for aliI E .pIP, p 0, in case the corresponding expansion
(4.8) satisfies condition (2.9) for some (integral) ex O. Note that
g;{i WK(p)'P = WJp) 8f! i 'P by examining the Fourier coefficients.
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